Completely bounded maps and invariant subspaces
نویسندگان
چکیده
منابع مشابه
Eigenvalues of Completely Nuclear Maps and Completely Bounded Projection Constants
We investigate the distribution of eigenvalues of completely nuclear maps on an operator space. We prove that eigenvalues of completely nuclear maps are square-summable in general and summable if the underlying operator space is Hilbertian and homogeneous. Conversely, if eigenvalues are summable for all completely nuclear maps, then every finite dimensional subspace of the underlying operator s...
متن کاملCompletely Bounded Norms of Right Module Maps
It is well-known that if T is a Dm–Dn bimodule map on the m×n complex matrices, then T is a Schur multiplier and ‖T‖cb = ‖T‖. If n = 2 and T is merely assumed to be a right D2-module map, then we show that ‖T‖cb = ‖T‖. However, this property fails if m ≥ 2 and n ≥ 3. For m ≥ 2 and n = 3, 4 or n ≥ m2 we give examples of maps T attaining the supremum C(m,n) = sup{‖T‖cb : T a right Dn-module map o...
متن کاملAlmost Self-Bounded Controlled-Invariant Subspaces and Almost Disturbance Decoupling
The objective of this contribution is to characterize the so-called finite fixed poles of the Almost Disturbance Decoupling Problem by state feedback (ADDP) ′ . The most important step towards this result relies on the extension to almost invariant subspaces of the key notion of self-boundedness, as initially introduced by Basile and Marro for perfect controlled-invariants, namely, we introduce...
متن کاملAmplification of Completely Bounded Operators and Tomiyama’s Slice Maps
Let (M,N ) be a pair of von Neumann algebras, or of dual operator spaces with at least one of them having property Sσ, and let Φ be an arbitrary completely bounded mapping on M. We present an explicit construction of an amplification of Φ to a completely bounded mapping on M⊗N . Our approach is based on the concept of slice maps as introduced by Tomiyama, and makes use of the description of the...
متن کاملOutput Feedback Model Matching through Self-bounded Controlled Invariant Subspaces
Model matching by output feedback is completely treated in the geometric approach framework. Self-bounded controlled invariant subspaces are shown to play a crucial role in the synthesis of minimal-order dynamic regulators achieving model matching by output feedback with stability. The approach provides insight into the internal eigenstructure of the minimal self-bounded controlled invariant su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2019
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-019-02255-3